Habitats and Wildlife in Winter

Habitats and Wildlife in Winter

By Frances Clark – Lead Ambassador, Nature Mapping Jackson Hole 

Habitats and Wildlife in Winter

Wildlife habitat has changed drastically with the onset of freezing temperatures, deep snow, and short days—winter!  Plants adapt by losing leaves (except for evergreens), storing starch underground, and altering physiology of cells.  The landscape is primarily brown and white, with little lush green. Food and cover are scarce. Consequently, animals that don’t migrate alter their behaviors, even metabolisms, to survive. Adaptations to winter are fascinating to contemplate and observe.

Here are a few interactions that Nature Mappers can map and all can enjoy!

Dry Hillsides

Look for Townsend’s Solitaires amidst Rocky Mountain Junipers that dot the dry slopes and ledges of buttes.  Townsend’s Solitaires are a bit smaller than robins, mostly gray but with a white eye-ring and a touch of orange on their wings, which is most visible when they fly.  Look up their sounds that can alert you to their presence.  They can survive the winter eating silvery juniper berries (actually cones) that contain a high level of lipids, carbohydrates, and some protein. Birds are also protected from chilling winds by the thick branches.  Fruit-eating Bohemian and Cedar Waxwings may also drop in and share the bounty.

Aspen Groves

Both snowshoe hares and Ruffed Grouse burrow in snow for warmth and safety and eat woody plants for food.  Great Horned Owls and Northern Goshawks predate them both.  A tough life.

Ruffed Grouse feature a crest of head feathers and a banded tail.  They often perch on limbs of aspen trees, nibbling buds, but are very hard to see. Before aspens shed their leaves in the fall, the plants transport reserves of food and nutrients into their twigs and buds as well as roots for growth next spring.  Consequently, aspen buds are relatively nutritious, but hard-to-digest, winter food.  Grouse have adapted to eating this material by first consuming large amounts quickly, storing the buds in their crop, and later in a safe warm burrow of snow, digesting it slowly through an extended intestinal system.

Sometimes, we hikers and skiers (and our dogs) flush up grouse from where they lay insulated by snow.

Also, look for tracks of snowshoe hares.  These elusive members of the lagomorph family browse on woody plants including aspens and pines.  They too have the challenge of digesting this tough diet.  As with all members of the family (rabbits and pika), the most fibrous material passes on through the digestive tract quickly, but the richer material is held back in a special chamber called a cecum.  In this large pouch, bacteria and other microorganisms go to work breaking down the complex compounds.  After several hours, this bacteria-infused matter is excreted as “night feces” and is then quickly eaten again. As these soft, pre-processed pellets pass through the stomach and intestines once more, the food value is extracted. The visible results are dry pellets. You may see them deposited just outside the snow burrows of hares.

Tracks of snowshoe hare can also hop into evergreen forests.

Evergreen Forest:

Evergreen forests—with their diverse “structure”, evergreen needles, and plentiful cones–provide cover and food for a variety of birds, small mammals, and some larger critters, such as moose and deer.

Skiing through a forest, you might spook up a Dusky Grouse.  Similar in size to its cousin the Ruffed Grouse, Dusky Grouse is mottled grayish to brown with undefined tail markings. If you are lucky, you may spy the orange crest over the eye of the male. This species feeds primarily on buds and twigs of evergreens.  Their chicken-like tracks can be obvious in snow.

It is easy to know if a red squirrel is present by it vociferous defense of its midden of cones.  But look also for tracks or a glimpse of a Pacific marten, its main predator. Martens use branches and fallen trunks as their highways.

In the calm of snow-clad evergreens, you may suddenly hear a flurry of birds.  Several different species arrive in “irruptive” flocks looking for food that is lacking in their homeland.  Often species are intermixed: mixed flocks.

Cassin’s Finch by Susan Marsh

Red-breasted Nuthatches, with their nasal calls, glean insects from rough bark or needle bunches.  Red Crossbills sweep into patches of favored cones, using their twisted bills to pry open cone scales, their spoon-like tongues to scoop the seed, and special “throat pockets” to hold the seeds until they can settle to eat.   Other small forest birds can include Cassin’s Finches, Pine Siskins, and Dark-eyed Juncos.  Many of these same birds may alight at a bird feeder near you.

Chickadees are not exclusive to the forest, but exemplify how small birds have adapted to extreme cold.  Chickadees can stash hundreds of individual seeds and remember where they put them for over a month.  They know if a seed has been taken by another and won’t waste time looking for it. Groups of 8-10 defend these storage areas with their constant chatter, signaling their dominance. These tiny birds, which weigh about the same as 2 nickels, add 10% of their body weight in fat each day and burn it up overnight to stay warm.

Energy-saving strategies include fluffing their feathers, hiding their heads under their wings, dropping their daytime body temperature by 5-11˚F, increasing their respiration rate, and even shivering to stay sufficiently warm.  Chickadees can reduce their body temperature even more to 50˚F, but such a state of torpor prevents them from responding to a predator, such as a weasel or owl.  And finally, chickadees may huddle together at night.  Amazing.  Common Redpolls, Pine Siskins, Ruby-crowned Kinglets, Red Crossbills, and White-crowned Sparrows use a variety of these same strategies.

Wetlands:

Most of our marshes, swamps, and small waterways freeze solid in winter limiting habitat of water-dependent animals.

Still, you may spy a hole where muskrats emerge onto the ice and munch a bunch of rhizomes.  These 2- to 4-pound “rat-tailed” rodents must find over a pound a day of starchy rhizomes: cattails, pond lilies, rushes, or sedges to survive. They typically search within 150’ of their dens, which are built into the side of ponds, marshes, or oxbows.

If you happen to come across a beaver dam, think about the beaver family snug in their lodge. Can you see steam coming out of the ventilation hole at the top? Imagine 40- to 50-pound adults swimming underwater for up to 15 minutes to retrieve willow stems from their winter stash.  The bark and wood is a diet full of cellulose.  To digest this fibrous fare, they have a similar hindgut fermentation process to snowshoe hares.  And if they have limited food and it’s super cold, beavers can drop their body temperature to about 34˚F to save energy!  And muskrats may come huddle a beaver family in their lodge!

Trumpeter Swans are often frozen out of favorite spots such as Flat Creek and must find other open water.  If you see them tipped up, they are likely foraging with their beaks for tubers of pondweeds (Stukenia pectinatus), stems of a stiff algae called chara, and lax leaves of waterweed (Elodea canadensis).   If these graceful birds are flying overhead, note where they are going. We want to protect their local movement routes, as well as open water habitats.

Ducks move in numbers from nighttime roosts and daytime feeding sites, such as from Fish Creek to the Snake River.  See if you can nature map the time and direction of these twice-daily shifts.

Wide Open Spaces

Flocks of Horned Larks and Snow Buntings feed and rest in sparse grasslands, often interspersed with seedy weeds. Buntings have migrated over a thousand miles from the arctic to be here in Jackson Hole for the winter.

Mule deer take advantage of the warmth and shallow snow on the south side of buttes, reducing their energy expenditure.  Bighorn sheep find Miller Butte advantageous because ledges provide safety from predators.  Moose move throughout a variety of habitats to thermal regulate (trying not to get too hot!) and find food.  All these species are browsers on sagebrush, bitterbrush, and shrubby members of the rose family.  Moose particularly like willow and dogwood. When you nature map, note what they are eating if you can.

In winter when green leaves have shriveled, the ungulate diet changes substantially, along with the microorganisms in their rumen.  This is why feeding moose, deer, and elk can actually cause them to starve.  While they may fill up with your offerings, it can take at least a week for the gut flora to adjust to changes in diet and to be able to digest the food value. To supplement their naturally meager winter diet, ungulates put on extra fat reserves before winter, which they draw upon until spring.  A resting ungulate is conserving this resource.

In sum:

Wildlife are entering the most precarious time of the year.  Food is less available and nutritious and it takes more energy to find it. Furthermore, predators—from wolves to goshawks to weasels–have far fewer menu options, and therefore are particularly active.  Their prey—ungulates, birds, and rodents–have to spend extra energy staying vigilant.  As Nature Mappers, and concerned naturalists, please share what you know about these critters, map them so we can document the places they need, and be extra careful not to disturb them.   The balance of energy gained and energy lost is at a tipping point of life and death for our Jackson Hole wildlife in winter.

 

 

 

More links and readings:

Winter Ecology:

  • Halfpenny, James C. and Ozanne, Roy D. Winter: An Ecological Handbook. Johnson Books, Boulder, CO. 1989.
  • Heinrich, Bernd. Winter World: the Ingenuity of Animal Survival. Harper Collins. 2003.

For birds:

Profiles of plant and some wildlife species:

Winter tracking:

  • Elbrock, Mark. Mammal Tracks & Sign: A Guide to North American Species. Stackhole Books.

Forest, Louise R. Field Guide to Tracking Animals In Snow.  Stackpole Books. 1988.

When Birding Became A Holiday Tradition

When Birding Became A Holiday Tradition

Published by Kyle Kissock

Here the Jackson Hole Wildlife Foundation we love communities coming together to engage in citizen science! This is one reason why our team is so excited to take part in the 2018 Christmas Bird Count (CBC), which is sponsored by the Jackson Hole Bird and Nature Club and will take place in Jackson on Saturday, December 15th.

It turns out, a citizen science bird count at Christmas is far from a fledgling affair. The idea was first proposed in 1900 by Frank Chapman, who worked at the American Natural History Museum in New York City. Chapman was also president of the newly formed Audubon Society and recognized declines in many avian populations due to over hunting. At the time, holiday traditions involving birds were generally lethal to the birds themselves, for example, the “Christmas Side Hunt,” which championed the individual who shot and returned home with the most feathers and furs. When Chapman and 27 volunteers set out to count, rather than kill, birds in the winter of 1900, their activity would have been quite the rarity.

The CBC evolved from humble beginnings to include a total of 76,697 global participants in 2017.1 Last year, volunteers counted a whopping 56,000,000 individual birds. Participants here in Jackson Hole recorded a total of 59 species in our valley. This year’s count will mark the 119th anniversary of the CBC, which has blossomed into the largest, oldest, and most uninterrupted citizen science program in the world.

Data collected on the CBC has been invaluable to our understanding of avian population trends over time. What’s more, trends captured by the CBC are available to the public and professional scientists alike. In 2007, CBC data was used to develop the Common Birds in Decline Report. Along with the Breeding Bird Survey data, this report identified several species that have experienced precipitous declines over forty years of CBC data, including Eastern Meadowlarks, Evening Grosbeaks, and Northern Pintails, each of which experienced over 70% reduction since the mid-1960’s.2

CBC data has also been utilized in recent years by scientists seeking to understand how climate change and human influence are key players in altering ranges and migration patterns. An Audubon Climate Change Report in 2014 indicated climate change could affect ranges of 588 North American Birds.2 Some species, like Great-tailed Grackles, have increased their ranges (over 5000% according to one study) as human modified environments provide reliable food supplies and safer breeding grounds.3 Several other trends that the CBC has helped document are listed below:

  • Corvids, a roosting species, have been drastically reduced by West Nile Virus – e.g. 99% mortality of American Crows who got the disease. However, there was a 70% survivorship of the closely related Fish Crow.
  • The rare California Yellow-billed Magpie is also affected by West Nile.
  • Common House Sparrows and European Starlings have both declined precipitously in the last few years both in this country and in their home lands in Europe. This data encourages additional research.
  • Merlins, formerly a deep woods boreal falcon, are increasing. They have switched from dense forest to nesting in human altered environments even across the prairies.

If you are interested in accessing more trends, the Audubon Society is scheduled to release a trend viewer on their website in the following weeks. You can view historical CBC data by following this link to their website, including accessing data from the previous CBCs in Jackson.

And lastly if you’d like to join us and haven’t signed up for the Christmas Bird Count this Saturday, you can email the Bird and Nature Club  at jhbirdclub@gmail.com sign up. Or just appear at Bubba’s, 100 Flat Creek Drive, in Jackson at 7:30 a.m. where we will gather for breakfast before dispersing in teams to our count areas.  We’ll see you in the field!

 

 

  1. History of the Christmas Bird Count. Retrieved from audubon.org
  2. Butcher, G. S. and Niven, D.K. (2007). Combining Data from the Christmas Bird Count and the Breeding Bird Survey to Determining the Continental Status and Trends of North America Birds. National Audubon Society Publication. 25.
  3. Wehtje, W. (2003), The range expansion of the great‐tailed grackle (Quiscalus mexicanusGmelin) in North America since 1880. Journal of Biogeography, 30: 1593-1607

Thank to Frances Clark for sharing helpful notes from the 2018 Rocky Mountain Citizen Science Conference.

Pinedale Area Ungulate and Sage-Grouse Fence Modification Projects

Pinedale Area Ungulate and Sage-Grouse Fence Modification Projects

A variety of photos below demonstrate our work to benefit wildlife on BLM land near Pinedale, WY this fall and early winter. Seasonal drop-downs will enable easier passage for all species (and reduce bird strikes) on the Soapholes and Fremont Butte fences shown in the map linked here. On the Boundary fence and Alkali Draw fences (also shown below), we applied four unique treatments in 1/4 mile segments for scientific study over the next two winters.

Black plastic coil was secured to the top wire as one potential visual enhancement for grouse. We believe it may be more visible during winter months than any white marker or white plastic application. However, since the ground is not always snow-covered while grouse are present, we also applied  “mixed black/white loom” to 1/4 mile segments to cover all conditions in theory. Black markers (hung 3-4 per panel on the top wire) were another treatment, and wooden stays (stapled two per panel) were the final treatment. An approximately 1-mile stretch of fence was given no new treatments to serve as a control. The two drop-down fences should be a nearly fail-safe treatment since collisions would be minimized to those occurring less than 16 inches from the ground (unlikely). We’re interested to see what works best to add to the existing literature on bird-friendly fences.

Pinedale_2018_Fence-Modification Map

 

Oh, Deer!

Oh, Deer!

By Jon Mobeck, Executive Director

Last night as I was walking in a quiet Jackson neighborhood, I noticed a mule deer limping in and out of the shadows cast at the edges of a street lamp’s reach. The deer was about 40 feet from where I stood. I stopped in my tracks, as these intimate interactions stir me. My heart dropped, though, as I watched it hobble across the street. What may have happened to this beautiful animal? Any number of natural things. And to those natural things we add obstacles of our own making.

Breaking the solitude, a car approached and startled the deer. It quickly hobbled across the street, ambled rather gingerly over a snow pile, stepped across a sidewalk and then halted at the foot of a chain link fence. After a few paces along the length of the fence in each direction, it reared back and leapt. While it didn’t flip, its legs or hooves definitely hit the fence as a ringing metal clatter disrupted the stillness.

And then the deer disappeared into the darkness of unlit yards.

I pondered what I had seen for a few moments, and then continued my walk. I was still thinking about it this morning when I mapped the observation at the Nature Mapping Jackson Hole site.

We know there are a lot of deer, moose, ravens, chickadees and squirrels living with us in Jackson. The value of recording our observations with these creatures (and all others) is that it provides us with information that can help us adjust our lifestyles to live more compatibly with wildlife. In the case of this injured deer, winter itself presents a significant challenge. Predators pose a threat. The scarcity of available food can pose a threat. And we certainly pose a threat, with every development that adds to their gauntlet of challenges. In that very brief interaction, I considered how the road, snowbank, sidewalk, fence, and houses impeded that deer – a 30 second window into its lifetime of navigating challenges.

This particular interaction inspired me to think about how we can do things better – to make life easier for our wild neighbors. Not every interaction is so. Often I map observations simply to record the joy of an experience with a wild thing. All of these observations matter, since none are inevitable into the future. Our best chance to ensure that people see deer in Jackson for the next century is to think carefully about how our lives impact theirs, and modify our behaviors and actions to facilitate a rewarding co-existence. Nature Mapping provides a tool to collect and share this knowledge. As founder Bert Raynes once wonderfully said, Nature Mapping is about “keeping common species common.” What an opportunity we have to do the right thing in this wild community!

What did you see today?

Northern Harrier

 

Why Do Bighorn Sheep Lick Your Car?

Why Do Bighorn Sheep Lick Your Car?

written by Aly Courtemanch, Wildlife Biologist, Wyoming Game and Fish Department

It’s that time of year again when bighorn sheep migrate from their summer ranges high in the mountains to the lower elevation valleys to spend the winter. Miller Butte on the National Elk Refuge is a well-known wintering area for a portion of the Jackson Bighorn Sheep Herd. The herd numbers approximately 400 sheep; about 80 of those spend the winter on the Elk Refuge. The bighorn sheep breeding season, or rut, occurs in late November and December. The Elk Refuge Road is one of the best places to observe this natural spectacle. Bighorn sheep have the latest rut of all of the ungulates in Jackson Hole because they have one of the shortest gestation (pregnancy) lengths (approximately 6 months).

A common sight near Miller Butte in the winter is bighorn sheep licking or eating dirt on the road, as well as licking passing cars.  Bighorn sheep, like other ungulates, have a strong desire for salt.  They are often seen at natural salt seeps in the mountains, ingesting crumbly rock and dirt. Because of this, bighorn sheep are attracted to road sides during the winter because we use various mixtures of sand and salt compounds (usually sodium chloride or magnesium chloride) to de-ice roads.  Bighorn sheep on Miller Butte have also learned that cars and trucks often have salt encrusted on their bumpers and wheels, which makes for a tasty treat. The types of salt commonly found on vehicles and on the Elk Refuge Road are not toxic to bighorn sheep and don’t pose a direct threat to their health. However, this unnatural behavior causes bighorn sheep to congregate in close contact with one another and licking cars exposes bighorn sheep to others’ saliva, which can cause disease transmission. Recent research in this herd has shown that some sheep are carriers of pneumonia-causing bacterial pathogens. These bacteria are passed from sheep to sheep via saliva, mucus, and droplets in the air. One sick sheep licking a car could easily infect other sheep that are licking the same car, which could lead to disease spreading quickly through the whole group. You can help prevent this behavior by only stopping in designated pull-outs, continuing to drive slowly through groups of bighorn sheep that are congregated on the road, and educating other visitors.

The last pneumonia outbreak in the Jackson Bighorn Sheep Herd occurred in 2011 and 2012, when approximately 30% of the sheep died. Symptoms of pneumonia include severe coughing and runny nose. In recent years, a few sheep have exhibited these symptoms at Miller Butte, but a herd-wide outbreak has not occurred. We appreciate receiving reports from Nature Mappers and the public of any sheep they observe coughing. A description of how many sheep and their ages/sexes (ram, ewe, or lamb) is very helpful, as well as a video if possible. Please report your observations of any sick sheep to Jackson Hole Wildlife Foundation or Wyoming Game and Fish Department.

Photographer Credit: Mark Gocke

Celebrate Wildlife

Enjoy monthly updates from the JHWF and stay informed about our work.

You have Successfully Subscribed!